Studies of transition metal clusters/nanoparticles

Home
Southern Illinois University

CONTACT

SIU.EDU

College of Agriculture, Life and Physical Sciences

Studies of transition metal clusters/nanoparticles: formation, catalysis, toxicity, sensing

The primary goal of our study is to investigate the electromagentic properties of transition metal clusters/nanoparticles and how these properties are correlated with the size and strcuture. Furthermore, using molecular dynamics simulations, we are also studying the formation of these clusters/nanoparticles. Understanding the properties and the growth process of transition metal clusters/nanoparticles is crucial to many technologically important processes, such as catalysis (e.g. oxygen reduction reaction, hydrogen production from methane and ethanol, and direct coal liquefaction), toxicity, and sensing (e.g. methane), just to name a few.

Publications related to the project:

  • K. Sun, M. Zhang, and L. Wang, Chem. Phys. Lett. 585 (2013) 89-94: "Effects of catalyst surface and hydrogen bond on ethanol dehydrogenation to ethoxy on Cu catalysts".

  • J. Lu, C. Aydin, N.D. Browning, L. Wang, and B.C. Gates, Catal. Lett. 142(2012)1445-1451: "Sinter-Resistant Catalysts: Supported Iridium Nanoclusters with Intrinsically Limited Sizes".

  • L. Wang (Ed.), Molecular Dynamics - Theoretical Developments and Applications in Nanotechnology and Energy, ISBN: 978-953-51-0443-8, InTech, 424 pages, April 2012.

  • L. Wang (Ed.), Molecular Dynamics – Studies of Synthetic and Biological Macromolecules, ISBN: 978-953-51-0444-5, InTech, 432 pages, April 2012.

  • L. Wang and G.A. Hudson, Molecular Dynamics - Theoretical Developmentsand Applications in Nanotechnology and Energy, Lichang Wang (Ed.), ISBN: 978-953-51-0443-8, InTech (2012) 25-42: "Advanced Molecular Dynamics Simulations on the Formation of Transition Metal Nanoparticles".

  • L. Mo, D. Liu, W. Li, L. Li, L. Wang, and X. Zhou, Appl. Surf. Sci. 257 (2011) 5746-5753: "Effects of dodecylamine and dodecanethiol on the conductive properties of nano-Ag films".

  • L. Wang,J.I. Williams, T. Lin, and C.J. Zhong, Catal. Today 165 (2011) 150-159: "Spontaneous reduction of O2 on PtVFe nanocatalysts".

  • W. Zhang and L. Wang, Comput. Theor. Chem. 963 (2011) 236-244: "The effect of cluster thickness on the adsorption of CH4 on Pdn".

  • G.A. Hudson, J. Li, and L. Wang, Chem. Phys. Lett. 498 (2010) 151-156: "Impact of cooling rate on the morphology of coalescence silver nanoparticles".

  • L. Wang, S.A. Ferro, C.B. Love, and C.J. Zhong, Proceeding of the 2010 IRAST International Congress on Computer Applications and Computational Science (2010) 303-306 : "Towards In Silico Selection of Catalyst Candidates for Oxygen Reduction Reaction ".

  • B. Wanjala, J. Lou, R. Loukrakpam, D. Mott, P. Njoki, B. Fang, M. Engelhard, H.R. Naslund, J. K. Wu, L. Wang, O. Malis, C.J. Zhong, Chem. Mater. 22 (2010) 4282-4294: "Nanoscale Alloying, Phase-Segragation, and Core-Shell Evolution of Gold-Platinum Nanoparticles and Their Electrocatalytic Effect on Oxygen Reduction Reaction ".

  • I-Im S. Lim, D. Mott, M. Engelhard, Y. Pan, S. Kamodia, J. Luo, P.N. Kjoki, S. Zhou, L. Wang, and C.J. Zhong, Anal. Chem. 81 (2009) 689-698: "Interparticle chiral recognition of enantimers: A nanoparticle-based regulation strategy".

  • L. Wang, Chem. Phys. Lett. 443 (2007) 304-308: "CO adsorbs upside-down on small PtmAun clusters".

  • T. Pawluk and L. Wang, J. Phys. Chem. C 111 (2007) 6713-6719: "Molecular dynamics simulations of the coalescence of iridium clusters".

  • J. Yukna and L. Wang, J. Phys. Chem. C 111 (2007) 13337-13347: Molecular dynamics studies of the coalescence of silver clusters.

  • L. Xiao and L. Wang, Chem. Phys. Lett. 392 (2004) 452-455: From planar to three-dimensional structural transition in gold clusters and the spin-orbit coupling effect.

  • T. Pawluk, L. Xiao, J. Yukna, and L. Wang, J. Chem. Theory Comput. 3 (2007) 325-328: Impact of PES on MD results of the coalescence of M2 + M with M = Ir, Pt, Au, Ag.

  • M.M. Sadek and L. Wang, J. Phys. Chem. A 110 (2006) 14036-14042: "Effect of adsorption site, size, and composition of Pt/Au bimetallic clusters on the CO frequency: A density functional theory study".

  • K. Spivey, J.I. Williams, and L. Wang, Chem. Phys. Lett. 432 (2006) 163-166: "Structures of undercagold clusters: Ligand effect".

  • L. Xiao and L. Wang, Chem. Phys. Lett. 430 (2006) 319-322: "Density functional theory study of single-wall platinum nanotubes".

  • L. Xiao, B. Tollberg, X. Hu, and L. Wang, J. Chem. Phys. 124 (2006)114309-1—114309-10: "Structural study of gold clusters".

  • Q. Ge, C. Song, and L. Wang, Comput. Mater. Sci. 35(2006)247-253: "A density functional theory study of CO adsorption on Pt-Au nanoparticles ".

  • C. Song, Q. Ge, and L. Wang, J. Phys. Chem. B 109(2005)22341-22350 : "DFT studies of Pt/Au bimetallic clusters and their interactions with the CO molecule".

  • T. Pawluk, Y. Hirata, and L. Wang, J. Phys. Chem. B 109(2005)20817-20823 : "Studies of iridium nanoparticles using density functional theory calculations".

  • W. Zhang, X. Ran, H. Zhao, and L. Wang, J. Chem. Phys. 121 (2004) 7717-7724: "The non-metallicity of molybdenum clusters".

  • L. Xiao and L. Wang, J. Phys. Chem. A 108 (2004) 8605-8614: "Structure of platinum clusters: planar or spherical?".

  • L. Xiao and L. Wang, Chem. Phys. Lett. 392 (2004) 452-455: "From planar to three-dimensional structural transition in gold clusters and the spin-orbit coupling effect".

  • W. Zhang, H. Zhao, and L. Wang, J. Phys. Chem. B 108 (2004) 2140-2147: The simple cubic structure of ruthenium clusters.

  • W. Zhang, L. Xiao, Y. Hirata, T. Pawluk, and L. Wang, Chem. Phys. Lett. 383 (2004) 67-71: The simple cubic structure of Ir clusters and the element effect on cluster structures.

  • W. Zhang, Q. Ge, and L. Wang, J. Chem. Phys.118 (2003) 5793-801: "Structure effects on the energetic, electronic, and magnetic properties of palladium nanoparticles".

  • L. Wang and Q. Ge, Chem. Phys. Lett. 366 (2002) 368-76: "Studies of rhodium nanoparticles using the first principles density functional theory calculations".