Complete publications | School of Chemical and Biomolecular Sciences| SIU

Home
Southern Illinois University

CONTACT

SIU.EDU

College of Agriculture, Life and Physical Sciences

Complete publications

Google Scholar Citations of our work 

  1. Tiantian Wang, Man Liu, Chunyuan Gao, Yakun Song, Lichang Wang, Dongzhi Liu, Tianyang Wang, and Wenping Hu, Dyes Pigm. 207(2022)110734-5pgs: “Electrospinning enables flexibility of organic long-persistent luminescence crystals”.
  2. Man Liu, Jun Zong, Lichang Wang, Dongzhi Liu, Tianyang Wang, and Wenping Hu, Adv. Opt. Mater. (2022)2201684: “Kilogram-scale Fabricated Organic Long-persistent Luminescence Materials with Multi-level Temperature Response”.
  3. Lichang Wang, Rotimi M. Ore, Peshala K. Jayamaha, Zhi-Peng Wu, and Chuan-Jian Zhong, Faraday Discuss. (2022): DOI: 10.1039/d2fd00101b: “Density functional theory based computational investigations on the stability of highly active trimetallic PtPdCu nanoalloys for electrochemical oxygen reduction”.
  4. Man Liu, Desissa Yadeta Muleta, Zhenyi Yu, Lichang Wang, Dongzhi Liu, Tianyang Wang, and Wenping Hu, J. Mater. Chem. C 10(2022)12249-12256: “An in situ DNA content detection enabled by organic long-persistent luminescence materials with tunable afterglow-time in water and air”.
  5. Rong Wang, Kun Gong, Ruihong Liu, Dongzhi Liu, Wei Li, Lichang Wang, and Xueqin Zhou, J. Porphyrins Phthalocyanines 26(2022)469-484: “Spectral properties and photophysical processes of meso-styryl substituent triphenylamine-porphyrin derivatives”.
  6. Thomas T. Testoff, Tenyu Aikawa, Eli Tsung, Ethan Lesko, Lichang Wang, Chem. Phys. 562(2022)111641-13pgs: “DFT studies of aggregation induced energy splitting and excitonic diversification in benzene and anthracene multimers”.
  7. Fang Xu, Kun Gong, Dongzhi Liu, Lichang Wang, Wei Li, Xueqin Zhou, Solar Energy 240(2022)157-167: “Enhancing photocurrent of dye-sensitized solar cells through solvent modulating aggregation of dyes”.
  8. Ruitao Wu and Lichang Wang, ChemPhysChem (2022)e202200132-13pgs: “Insights and Activation Energy Surface of the Dehydrogenation of C2HxO Species in Ethanol Oxidation Reaction on Ir(100)”.
  9. Krishanthi C. Weerasinghe, Tianyang Wang, Junpeng Zhuang, Haiya Sun, Dongzhi Liu, Wei Li, Wenping Hu, Xueqin Zhou, Lichang Wang, Chem. Phys. Impact 4(2022)100062-8pgs: “Coherently degenerate state engineering of organic small molecule materials to generate Wannier excitons”.
  10. Fengsheng Ge, Fang Xu, Kun Gong, Dongzhi Liu, Wei Li, Lichang Wang, Xueqin Zhou, Dyes Pigm. 200(2022)110127-10pgs: “Sensitizers designed toward efficient intramolecular charge separation for p-type dye-sensitized solar cells”.
  11. Ruitao Wu and Lichang Wang, Chem. Phys. Impact 3(2021)100040-9pgs: “Vinyl alcohol formation via catalytic β-dehydrogenation of ethanol on Ir(100)”.
  12. Ruitao Wu, Kaitlyn R. Wiegand, Longmei Ge, and Lichang Wang, J. Phys. Chem. C 125(2021)14275-14286: “Role of Oxygen Species toward the C–C Bond Cleavage in Steam Reforming of C2+ Alkanes: DFT Studies of Ethane on Ir(100)”.
  13. Jiawei Song, Desissa Yadeta Muleta, Wenhui Feng, Yakun Song, Xueqin Zhou, Wei Li, Lichang Wang, Dongzhi Liu, Tianyang Wang, Wenping Hu, Dyes Pigm. 193(2021)109501-7pgs: “Photophysical tuning of small-molecule-doped organic crystals with long-persistent luminescence by variation of dopants”.
  14. Kun Gong, Jieqiong Yang, Thomas T. Testoff, Wei Li, Tianyang Wang, Dongzhi Liu, Xueqin Zhou, and Lichang Wang, Chem. Phys. 549(2021)111256-11pgs: “Electronically excited state structures and stabilities of organic small molecules: A DFT study of triphenylamine derivatives”.
  15. Ruitao Wu and Lichang Wang, Comput. Mater. Sci. 196(2021)110514-11pgs: “Unveiling alloying effects on the catalytic activities of Cu3Pt and Cu3Pd for nonoxidative dehydrogenation and esterification of ethanol”.
  16. Desissa Yadeta Muleta, Jiawei Song, Wenhui Feng, Ruitao Wu, Xueqin Zhou, Wei Li, Lichang Wang, Dongzhi Liu, Tianyang Wang and Wenping Hu, J. Mater. Chem. C 9(2021)5093-5097: “Small molecule-doped organic crystals towards long-persistent luminescence in water and air”.
  17. Chan Wu, Zhourong Xiao, Li Wang, Guozhu Li, Xiangwen Zhang, and Lichang Wang, Catal. Sci. Technol. 11 (2021) 1965-1973: “Modulating Oxidation State of Ni/CeO2 Catalyst for Steam Methane Reforming: A Theoretical Prediction with Experimental Verification”.
  18. Wenhui Feng, Zhuoma Zengji, Thomas T. Testoff, Tianyang Wang, Xilong Yan, Wei Li, Dongzhi Liu, Lichang Wang, and Xueqin Zhou, Anal. Chim. Acta 1153(2021)338278: “Photoinduced Charge-Separated Molecular Probe for Ultrasensitive Spectrum Analysis and Rapid Colorimetric Detection of Platinum Ions”.
  19. Zhi-Peng Wu, Dominic T. Caracciolo, Yazan Maswadeh, Jianguo Wen, Zhijie Kong, Shiyao Shan, Jorge A Vargas, Shan Yan, Emma Hopkins, Keonwoo Park, Anju Sharma, Yang Ren, Valeri Petkov, Lichang Wang, and Chuan-Jian Zhong, Nature Commun. 12(2021)859-14pgs: “Alloying–Realloying Enabled High Durability for Pt–Pd–3d-Transition Metal Nanoparticle Fuel Cell Catalysts”.
  20. Ruitao Wu, Kaitlyn R. Wiegand, and Lichang Wang, J. Chem. Phys. 154(2021)054705-11pgs: “Impact of the degree of dehydrogenation in ethanol C–C bond cleavage on Ir(100)”.
  21. Ruihong Liu, Dongzhi Liu, Fancui Meng, Wei Li, Lichang Wang, and Xueqin Zhou, Dyes Pigm. 187(2021)109135-7pgs: “Fabrication of porphyrin-based aggregates through modulating hexapeptide secondary conformation".
  22. Ruitao Wu, Kang Sun, Yifei Chen, Minhua Zhang, and Lichang Wang, Surf. Sci. 703(2021)121742-14pgs: “Ethanol Dimerization to Ethyl Acetate and Hydrogen on the Multifaceted Copper Catalysts”.
  23. Ruilin Geng, Wenhui Feng, Thomas T. Testoff, Dongzhi Liu, Tianyang Wang, Wei Li, Lichang Wang, and Xueqin Zhou, Chem. Ind. Eng. 38(2021)13-24: “Synthesis and Performance Research of D-A-D Type Transport Materials Applied in Perovskite Solar Cells” (in Chinese with English Title/Abstract).
  24. Wenhui Feng, Ruilin Geng, Dongzhi Liu, Tianyang Wang, Thomas T. Testoff, Wei Li, Wenping Hu, Lichang Wang, and Xueqin Zhou, Org. Electronics 703(2021)121742-8pgs: “A charge-separated interfacial hole transport semiconductor for efficient and stable perovskite solar cells”.
  25. Ruitao Wu and Lichang Wang, J. Phys. Chem. C 124 (2020) 26953-26964: “A Density Functional Theory Study on the Mechanism of Complete Ethanol Oxidation on Ir(100): Surface Diffusion-Controlled C-C Bond Cleavage”.
  26. Fang Xu, Thomas T. Testoff, Lichang wang, and Xueqin Zhou, Molecules 25 (2020)4478-32pgs: “Cause, Regulation and Utilization of Dye Aggregation in Dye-Sensitized Solar Cells”.
  27. Shan Yan, Shiyao Shan, Jianguo Wen, Jin Li, Ning Kang, Zhipeng Wu, Jack Lombardi, Han-Wen Cheng, Jie Wang, Jin Luo, Ning He, Derrick Mott, Lichang Wang, Qingfeng Ge, Benjamin S. Hsiao, Mark Poliks, and Chuan-Jian Zhong, Adv. Mater. 32(2020)2002171-10pgs: “Surface-Mediated Interconnections of Nanoparticles in Cellulosic Fibrous Materials toward 3D Sensors”.
  28. Jieqiong Yang, Dongzhi Liu, Ting Lu, Haiya Sun, Wei Li, Thomas T. Testoff, Xueqin Zhou, and Lichang Wang, Int. J. Quantum. Chem. 120(2020)e26355-11pgs: “Effects of heterocyclic ring and amino-ethyl-amino group on the electronic and photophysical properties of a triphenylamine-pyrimidine dye”.
  29. Chan Wu, Li Wang, Zhourong Xiao, Guozhu Li, and Lichang Wang, Chem. Phys. Lett. 746 (2020) 137229-6: “Effects of van der Waals interactions on the dehydrogenation of n-butane on a Ni(111) surface”
  30. Wenhui Feng, Tianyang Wang, Thomas T. Testoff, Chelsea   Bridgmohan, Chuanwu Zhao,  Haiya Sun, Wenping Hu, Wei Li, Dongzhi Liu, Lichang Wang, Xueqin Zhou, Spectrochim. Acta A: Mol. Biomol. Spectro. 229 (2020) 119016-5pgs: “Exploiting singlet excited state conformation for rational design of highly efficient photoinduced electron transfer molecules”.
  31. Chan Wu, Li Wang, Zhourong Xiao, Guozhu Li, and Lichang Wang, Phys. Chem.  Chem.  Phys. 22 (2020) 724-733: “Understanding deep dehydrogenation and cracking of n-butane on Ni(111) surface by a DFT study”.
  32. Yachu Du, Lichang Wang, and Kyle N. Plunkett, J. Org. Chem. 85 (2020) 79-84: “1,1’-Biaceanthrylene and 2,2'-Biaceanthrylene: Models for Linking Larger Polycyclic Aromatic Hydrocarbons via Five-Membered Rings”.
  33. Zhi-Peng Wu, Bei Miao, Emma Hopkins, Keonwoo Park, Yifei Chen, Haoxi Jiang, Minhua Zhang, Chuan-Jian Zhong, and Lichang Wang, J. Phys. Chem. C 123 (2019) 20853-20868: “Poisonous Species in Complete Ethanol Oxidation Reaction on Palladium Catalysts”.
  34. Han-Wen Cheng, Zhi-Peng Wu, Shan Yan, Jing Li, Shiyao Shan, Lichang Wang, Marc D. Porter, and Chuan-Jian Zhong, Chem. Sci. 10 (2019) 7104-7110: “A simple vaporous probe with atomic-scale sensitivity to structural ordering and orientation of molecular assembly”.
  35. Jiangli Han, Wenhui Feng, Desissa Yadeta Muleta, Chelsea Nicole Bridgmohan, Yangyang Dang, Guohua Xie, Haoli Zhang, Xueqin Zhou, Wei Li, Lichang Wang, Dongzhi Liu, Yanfeng Dang, Tianyang Wang, and Wenping Hu, Adv. Funct. Mater. 29 (2019) 1902503-6: “Small-Molecule-Doped Organic Crystals with Long-Persistent Luminescence”.
  36. Wenhui Feng, Ping’an Li, Haiya Sun, Dongzhi Liu, Lichang Wang, Xueqin Zhou, Wei Li, and Tianyang Wang, J. Mol. Struct. 1196 (2019) 604-610: “Linkage dependence of charge separated lifetime in small donor-acceptor dyads system”
  37. Haiya Sun, Ping’an Li, Dongzhi Liu, Tianyang Wang, Wei Li, Wenping Hu, Lichang Wang, and Xueqin Zhou, J. Photochem. Photobiol. A: Chem. 368(2019)223-241: “Tuning photophysical properties via alkoxyl groups in charge-separated triphenylamine sensitizers for dye-sensitized solar cells”.
  38. Bei Miao, Zhi-Peng Wu, Han Xu, Minhua Zhang, Yifei Chen, and Lichang Wang, Comput. Mater. Sci. 156(2019)175-186: “DFT studies on the key competing reaction steps towards complete ethanol oxidation on transition metal catalysts”.
  39. Zhi-Peng Wu, Shiyao Shan, Zhi-Hui Xie, Ning Kang, Keonwoo Park, Emma Hopkins, Shan Yan, Anju Sharma, Jin Luo, Jie Wang, Valeri Petkov, Lichang Wang, and Chuan-Jian Zhong, ACS Catal. 8(2018)11302-11313:”Revealing the Role of Phase Strcutures of Bimetallic Nanocatalysts in the Oxygen Reduction Reaction”.
  40. Bei Miao, Zhi-Peng Wu, Minhua Zhang, Yifei Chen, and Lichang Wang, J. Phys. Chem. C 122(2018)22448-22459: “Role of Ni in Bimetallic PdNi Catalysts for Ethanol Oxidation Reaction”.
  41. Haiya Sun, Dongzhi Liu, Tianyang Wang, Ping’an Li, Chelsea N. Bridgmohan, Wei Li, Ting Lu, Wenping Hu, Lichang Wang, and Xueqin Zhou, Org. Electronics 61(2018)35-45: “Charged-Separated Sensitizers with Enhanced Intramolecular Charge Transfer for Dye-Sensitized Solar Cells: Insight from Structure-Performance Relationship”.
  42. Zhang Linli, Lu Ting, Dongzhi Liu, Tianyang Wang, Wei Li, Lichang Wang, and Xueqin Zhou, Chem. Ind. Eng. 35(2018)22-28: “Synthesis and Photophysical Properties of Cyano-Substituted Styryl Compound” (in Chinese w/ English Title/Abstract).
  43. Aolin Lu, Zhi-Peng Wu, Binghui Chen, Dong-Liang Peng, Shan Yan, Shiyao Shan, Zakiya Skeete, Fangfang Chang, Yuanzhi Chen, Hongfeng Zheng, Deqian Zeng, Lefu Yang, Anju Sharma, Jin Luo, Lichang Wang, Valeri Petkov, and Chuan-Jian Zhong, J. Mater. Chem. A 6(2018)5143-5155: “From a Au-rich core/PtNi-rich shell to a Ni-rich core/PtAu-rich shell: an effective thermochemical pathway to nanoengineering catalysts for fuel cells”.
  44. Bei Miao, Zhipeng Wu, Han Xu, Minhua Zhang, Yifei Chen, Lichang Wang, Chem. Phys. Lett. 688(2017)92-97: “Ir catalysts: Preventing CH3COOH formation in ethanol oxidation”.
  45. Han Xu, Bei Miao, Minhua Zhang, Yifei Chen, Lichang Wang, Phys.  Chem.  Chem.  Phys.  19(2017)26210-26220: “Mechanism of C-C and C-H bond cleavage in ethanol oxidation reaction on Cu2O(111): A DFT-D and DFT+U study”.
  46. Zhipeng Wu, Minhua Zhang, Haoxi Jiang, Chuan-Jian Zhong, Yifei Chen, Lichang Wang, Phys.  Chem.  Chem.  Phys.  19(2017)15444-15453: “Competitive C-C and C-H bond scission in the ethanol oxidation reaction on Cu(100) and the effect of an alkaline environment”.
  47. Tianyang Wang, Krishanthi C. Weerasinghe, Haiya Sun, Ping’an Li, Dongzhi Liu, Wei Li, Wenping Hu, Xueqin Zhou, Lichang Wang, J. Mol. Struct. 1142(2017)226-238: “Characterization of photo-induced electron and hole transfer in a porphyrin based ambipolar organic molecule with cascade energy levels”.
  48. Ruitao Wu, Lichang Wang, Chem. Phys. Lett. 678(2017)196-202: “Alloying effect via comparative studies of ethanol dehydrogenation on Cu(111), Cu3Pd(111), and Cu3Pt(111)”.
  49. Haiya Sun, Dongzhi Liu, Tianyang Wang, Ting Lu, Wei Li, Siyao Ren, Wenping Hu, Lichang Wang, Xueqin Zhou, ACS Appl. Mater. Interfaces 9(2017)9880-9891: “Enhanced Internal Quantum Efficiency in Dye-Sensitized Solar Cells: Effect of Long-Lived Charged-Separated State of Sensitizers”.
  50. Xiaoyun Fan, Zhipeng Wu, Lichang Wang, Chuanyi Wang, Chem. Mater. 29(2017)639-647: “Exploring the Origin of High Dechlorination Activity in Polar Materials M2B5O9Cl (M= Ca, Sr, Ba, Pb) with Built-in Electric Field”.
  51. Tianyang Wang, Haiya Sun, Linli Zhang, Nathan D. Colley, Chelsea N. Bridgmohan, Dongzhi Liu, Wenping Hu, Wei Li, Xueqin Zhou, Lichang Wang, Dyes Pigm. 139(2017)601-610: “Effect of photo-induced charge separated state lifetimes in donor-acceptor1-acceptor2 organic ambipolar semiconductors on their photovoltaic performances”.
  52. Tianyang Wang, Haiya Sun, Ting Lu, Chelsea N. Bridgmohan, Fengqing Li, Dongzhi Liu, Wenping Hu, Wei Li, Xueqin Zhou, Lichang Wang, Dyes Pigm. 139(2017)264-273: “Dissociation exists in s-triazine based donor-acceptor organic systems by photo-induced electron transfer”.
  53. Chuanwu Zhao, Tianyang Wang, Dongmei Li, Ting Lu, Dongzhi Liu, Qingbo Meng, Qianqian Zhang, Fengqing Li, Wei Li, Wenping Hu, Lichang Wang, Xueqin Zhou, Dyes Pigm. 137(2017)256-265: “Synthesis and characterization of triphenylamine modified azobenzene dyes”.
  54. Krishanthi C. Weerasinghe, Tianyang Wang, Junpeng Zhuang, Dongzhi Liu, Wei Li, Xueqin Zhou, and Lichang Wang, Comput. Mater. Sci. 126(2017)244-251: “Mechanistic study and design of porphyrin derivatives for inducing the triplet state of perelene bismide”.
  55. Ting Lu, Haiya Sun, Nathan D. Colley, Chelsea N. Bridgmohan, Dongzhi Liu, Wei Li, Wenping Hu, Xueqin Zhou, Tianyang Wang, and Lichang Wang, Dyes Pigm. 136(2017)404-415: “Tuning the donors to control the lifetimes of charge separated states in triazine-based Donor-Acceptor systems”.
  56. Tianyang Wang, Chuanwu Zhao, Linli Zhang, Ting Lu, Haiya Sun, Chelsea N. Bridgmohan, Krishanthi C. Weerasinghe, Dongzhi Liu, Wenping Hu, Wei Li, Xueqin Zhou, and Lichang Wang, J. Phys. Chem. C 120(2016)25263-25275: Enhancing Photoinduced Charge Separation through Donor Moiety in Donor-Accepter Organic Semiconductors”.
  57. Bingxin Yuan, Junpeng Zhuang, Kristopher M. Kirmess, Chelsea N. Bridgmohan, Adam C. Whalley, Lichang Wang, Kyle N. Plunkett, J. Org. Chem. 81(2016)8312-8318: “Pentaleno[1,2-a:4,5’]diacenaphthylenes: Uniquely Stabilized Pentalene Derivatives”.
  58. Siyao Ren, Xueqin Zhou, Dongzhi Liu, Kejian Jiang, Wei Li, Lichang Wang, and Tianyang Wang, Chem. J. Chin. Univ. 37 (2016)1669-1677: “Effect of Aspect Ratio of the Dye Molecule on the Properties of Dye Sensitized Solar Cells” (in Chinese w/ English Title/Abstract).
  59. Tianyang Wang, Krishanthi C. Weerasinghe, Haiya Sun, Xiaoxia Hu, Ting Lu, Dongzhi Liu, Wenping Hu, Wei Li, Xueqin Zhou, and Lichang Wang, J.Phys. Chem. C 120(2016)11338-11349: “Effect of Triplet State on the Lifetime of Charge Separation in Ambipolar D-A1-A2 Organic Semiconductors”.
  60. Tianyang Wang, Haiya Sun, Ting Lu, Krishanthi C. Weerasinghe, Dongzhi Liu, Wenping Hu, Xueqin Zhou, Lichang Wang, Wei Li, and Lizeng Liu, J. Mol. Struct. 1116(2016)256-263: “Tuning photophysical properties and electronic energy levels of 1-aminoanthraquinone derivatives by introducing N-ethyl substituent”.
  61. Sambasiva R. Bheemireddy, Pamela C. Ubaldo, Aaron D. Finke, Lichang Wang, and Kyle N. Plunkett, J. Mater. Chem. C 4(2016)3963-3969: “Contorted aromatics via a palladium-catalyzed cyclopentannulation strategy”.
  62. Sambasiva R. Bheemireddy, Pamela C. Ubaldo, Peter W. Rose, Aaron D. Finke, Junpeng Zhuang, Lichang Wang, and Kyle N. Plunkett, Angew. Chem. Int. Ed. 54(2015)15762-15766: “Stabilizing Pentacene By Cyclopentannulation”.
  63. Wei Li, Shangqiu Wang, Xueqin Zhou, Dongzhi Liu, Lichang Wang, and Tianyang Wang, Fine Chem. 32(2015)975-979: “Synthesis and Properties of Styryl Triphenylamine (Indoline) Derivatives” (in Chinese w/ English Title/Abstract).
  64. Xiaoyun Fan, Kangrong Lai, Lichang Wang, Hengshan Qiu, Jiao Yin, Pengjun Zhao, Shilie Pan, Jinbao Xu, and Chuanyi Wang, J. Mater. Chem. A 3(2015)12179-12187: “Efficient photocatalytic dechlorination of chlorophenols over a nonlinear optical material Na3VO2B6O11 under UV-visible light irradiation”.
  65. T. Wang, K.C. Weerasinghe, P.C. Ubaldo, D. Liu,W. Li, X. Zhou, L. Wang, Chem. Phys. Lett.  618(2015)142-146: “Tuning electron–hole distance of the excitons in organic molecules using functional groups”.
  66. T. Wang, K.C. Weerasinghe, D. Liu, W. Li, X. Yan, X. Zhou and L. Wang,  J Mater. Chem. C 2(2014)5466-5470: “Ambipolar organic semiconductors with cascades of energy levels for generating long-lived charge separated states: a donor–acceptor1–acceptor2 architectural triarylamine dye”.
  67. Tianyang Wang, Xiaoxia Hu, Haiya Sun, Jianfeng Guo, Dongzhi Liu, Wei Li, Lichang Wang, Xueqin Zhou, Chem. J. Chin. Univ. 35(2014)1753-1760: “Photophysical Processes in a Novel Porphyrin-perylene Metallosupramolecule with a Long-Lived Triplet State” (in Chinese w/ English Title/Abstract).
  68. X. Zhou, D. Liu, T. Wang, X. Hu, J. Guo, K.C. Weerasinghe, L. Wang, and W. Li, J. Photochem. Photobiol. A: Chem. 274 (2014) 57-63: “Synthesis and photophysical studies of triazine-linked porphyrin-perylene bismide dyad with long-lived perylene triplet state”.
  69. K. Sun, M. Zhang, and L. Wang, Chem. Phys. Lett. 585 (2013) 89-94: "Effects of catalyst surface and hydrogen bond on ethanol dehydrogenation to ethoxy on Cu catalysts".
  70. Li Wang, Wei Li, Dongzhi Liu, Lichang Wang, and Xueqin Zhou, Chem. Ind. Eng. Prog. 32 (2013) 2160-2165: “Research Progress on Self-Assembly Methods to Prepare Porphyrin Nanomaterials in Solution (in Chinese with English Title/Abstract).
  71. J. Lu, C. Aydin, N.D. Browning, L. Wang, and B.C. Gates, Catal. Lett. 142(2012)1445-1451: "Sinter-Resistant Catalysts: Supported Iridium Nanoclusters with Intrinsically Limited Sizes".
  72. J.D. Wood, J.L. Jellison, A.D. Finke, L. Wang, and K.N. Plunkett, J. Am. Chem. Soc. 134(2012)15783-15789: "Electron Acceptors Based on Functionalizable Cyclopenta[hi] aceanthrylenes and Dicyclopenta[de,mn]tetracenes".
  73. L. Wang (Ed.), Molecular Dynamics - Theoretical Developments and Applications in Nanotechnology and Energy, ISBN: 978-953-51-0443-8, InTech, 424 pages, April 2012.
  74. L. Wang (Ed.), Molecular Dynamics – Studies of Synthetic and Biological Macromolecules, ISBN: 978-953-51-0444-5, InTech, 432 pages, April 2012.
  75. L. Wang and G.A. Hudson, Molecular Dynamics - Theoretical Developments and Applications in Nanotechnology and Energy, Lichang Wang (Ed.), ISBN: 978-953-51-0443-8, InTech (2012) 25-42: "Advanced Molecular Dynamics Simulations on the Formation of Transition Metal Nanoparticles".
  76. L. Mo, D. Liu, W. Li, L. Li, L. Wang, and X. Zhou, Appl. Surf. Sci. 257 (2011) 5746-5753: "Effects of dodecylamine and dodecanethiol on the conductive properties of nano-Ag films".
  77. L. Wang, J.I. Williams, T. Lin, and C.J. Zhong, Catal. Today 165 (2011) 150-159: "Spontaneous reduction of O2 on PtVFe nanocatalysts".
  78. W. Zhang and L. Wang, Comput. Theor. Chem. 963 (2011) 236-244: "The effect of cluster thickness on the adsorption of CH4 on Pdn".
  79. L.L. Walkup, K.C. Weerasinghe, M. Tao, X. Zhou, M. Zhang, D. Liu, and L. Wang, J. Phys. Chem. C 114 (2010) 19521-19528: "Importance of Dynamics in Electron Excitation and Transfer of Organic Dyes".
  80. G.A. Hudson, J. Li, and L. Wang, Chem. Phys. Lett. 498 (2010) 151-156: "Impact of cooling rate on the morphology of coalescence silver nanoparticles".
  81. L. Wang, S.A. Ferro, C.B. Love, and C.J. Zhong, Proceeding of the 2010 IRAST International Congress on Computer Applications and Computational Science (2010) 303-306 : "Towards In Silico Selection of Catalyst Candidates for Oxygen Reduction Reaction ".
  82. Q.A. Best, R. Xu, M.E. McCarroll, L. Wang, and D.J. Dyer, Org. Lett. 12 (2010) 3219-3221: "Design and Investigation of a Series of Rhodamine-Based Fluorescent Probes for Optical Measurements of pH ".
  83. Z. Xu, S. Lu, J. Li, and L. Wang, IEEE proceedings of 2010 Sixth International Conference on Natural Computation 3(2010)1586-1589: "Artificial neural network potential energy surface for silver nanoparticles ".
  84. B. Wanjala, J. Lou, R. Loukrakpam, D. Mott, P. Njoki, B. Fang, M. Engelhard, H.R. Naslund, J. K. Wu, L. Wang, O. Malis, C.J. Zhong, Chem. Mater. 22 (2010) 4282-4294: "Nanoscale Alloying, Phase-Segragation, and Core-Shell Evolution of Gold-Platinum Nanoparticles and Their Electrocatalytic Effect on Oxygen Reduction Reaction ".
  85. G.A. Hudson, L. Cheng, J. Yu, Y. Yan, D.J. Dyer, M.E. McCarrol, and L. Wang, J. Phys. Chem. B 114 (2010) 870-876: "Computational Studies on Response and Binding Selectivity of Fluoresence Sensors".
  86. Z. Xu, X. Shi, J. Li, S. Lu, and L. Wang, IEEE proceedings of 2009 Fifth International Conference on Natural Computation 1 (2009) 86-90: "Artificial neural network method to construct potential energy surfaces for transition metal nanoparticles: Pt, Au, and Ag".
  87. T. Lin, W. Zhang, and L. Wang, J. Phys. Chem. A 113 (2009) 7267-7274: "Theoretical calculation of separation factors for boron isotopic exchange between BF3 and BF3·C6H5OCH3 ".
  88. I-Im S. Lim, D. Mott, M. Engelhard, Y. Pan, S. Kamodia, J. Luo, P.N. Kjoki, S. Zhou, L. Wang, and C.J. Zhong, Anal. Chem. 81 (2009) 689-698: "Interparticle chiral recognition of enantimers: A nanoparticle-based regulation strategy".
  89. T. Lin, W. Zhang, and L. Wang, J. Phys. Chem. A 112 (2008) 13600-13608: "Complex formation between anisole and boron trifluoride: structural and binding properties".
  90. J. Yukna and L. Wang, J. Phys. Chem. C 111 (2007) 13337-13347: "Molecular dynamics studies of the coalescence of silver clusters".
  91. L. Wang, Chem. Phys. Lett. 443 (2007) 304-308: "CO adsorbs upside-down on small PtmAun clusters".
  92. T. Pawluk and L. Wang, J. Phys. Chem. C 111 (2007) 6713-6719: "Molecular dynamics simulations of the coalescence of iridium clusters".
  93. L. Xiao and L. Wang, J. Phys. Chem. B 111 (2007) 1657-1663: "Methane activation on Pt and Pt4: A density functional theory study".
  94. T. Pawluk, L. Xiao, J. Yukna, and L. Wang, J. Chem. Theory Comput. 3 (2007) 325-328: "Impact of PES on MD results of the coalescence of M2 + M with M = Ir, Pt, Au, Ag".
  95. M.M. Sadek and L. Wang, J. Phys. Chem. A 110 (2006) 14036-14042: "Effect of adsorption site, size, and composition of Pt/Au bimetallic clusters on the CO frequency: A density functional theory study".
  96. M.E. McCarrol, Y. Shi, S. Harris, S. Puli, I. Kimaru, R. Xu, L. Wang, and D.J. Dyer, J. Phys. Chem. B 110(2006)22991-22994 : "Computational prediction and experimental evaluation of a photoinduced electron transfer sensor".
  97. K. Spivey, J.I. Williams, and L. Wang, Chem. Phys. Lett. 432 (2006) 163-166: "Structures of undercagold clusters: Ligand effect".
  98. L. Xiao and L. Wang, Chem. Phys. Lett. 430 (2006) 319-322: "Density functional theory study of single-wall platinum nanotubes".
  99. L. Xiao, B. Tollberg, X. Hu, and L. Wang, J. Chem. Phys. 124 (2006)114309-1—114309-10: "Structural study of gold clusters".
  100. Q. Ge, C. Song, and L. Wang, Comput. Mater. Sci. 35(2006)247-253: "A density functional theory study of CO adsorption on Pt-Au nanoparticles ".
  101. C. Song, Q. Ge, and L. Wang, J. Phys. Chem. B 109(2005)22341-22350 : "DFT studies of Pt/Au bimetallic clusters and their interactions with the CO molecule".
  102. T. Pawluk, Y. Hirata, and L. Wang, J. Phys. Chem. B 109(2005)20817-20823 : "Studies of iridium nanoparticles using density functional theory calculations".
  103. W. Zhang, X. Ran, H. Zhao, and L. Wang, J. Chem. Phys. 121 (2004) 7717-7724: "The non-metallicity of molybdenum clusters".
  104. L. Xiao and L. Wang, J. Phys. Chem. A 108 (2004) 8605-8614: "Structure of platinum clusters: planar or spherical?".
  105. M. Baer, C. Coletti, G.C. Schatz, S. Toxvaerd, and L. Wang, J. Phys.Chem.A 108 (2004) 8554-8558: “Scientific contributions of Gert Due Billing”.
  106. L. Xiao and L. Wang, Chem. Phys. Lett. 392 (2004) 452-455: "From planar to three-dimensional structural transition in gold clusters and the spin-orbit coupling effect".
  107. W. Zhang, H. Zhao, and L. Wang, J. Phys. Chem. B 108 (2004) 2140-2147: "The simple cubic structure of ruthenium clusters".
  108. W. Zhang, L. Xiao, Y. Hirata, T. Pawluk, and L. Wang, Chem. Phys. Lett. 383 (2004) 67-71: "The simple cubic structure of Ir clusters and the element effect on cluster structures".
  109. L. Wang, Chem. Phys. Lett. 383 (2004) 62-66: "The accuracy of the quantum/classical time-dependent self-consistent field treatment to reaction dynamics of large systems".
  110. Y. Cao, Q. Ge, D.J. Dyer, and L. Wang, J. Phys. Chem. B 107 (2003) 3803-07: "Steric effects on the adsorption of alkylthiolate self-assembled monolayers on Au(111)".
  111. W. Zhang, Q. Ge, and L. Wang, J. Chem. Phys.118 (2003) 5793-801: "Structure effects on the energetic, electronic, and magnetic properties of palladium nanoparticles".
  112. L. Wang and Q. Ge, Chem. Phys. Lett. 366 (2002) 368-76: "Studies of rhodium nanoparticles using the first principles density functional theory calculations".
  113. L. Wang and A.B. McCoy, J. Chem. Phys. 119 (2003) 1996: "Quantum/Classical Studies of O(3P) + Ar.HCl Collision Dynamics".
  114. A.B. McCoy, L. Wang, and F. Chen, Faraday Discuss. 118 (2001) 281-94: "Quantum/classical studies of photo dissociation and reaction dynamics in clusters".
  115. L. Wang, W.J. Meurer, and A.B. McCoy, J. Chem. Phys. 113 (2000) 10605-14: "Multiple configuration quantum/classical treatments of reaction dynamics".
  116. L. Wang, C. Kalyanaraman, and A.B. McCoy, J. Chem. Phys. 110 (1999) 11221-32: "Time-dependent quantum studies of the O(3P)+ HCl reaction".
  117. L. Wang and A.B. McCoy, Phys. Chem. Chem. Phys. 1 (1999) 1227-35: "Time-dependent studies of reaction dynamics: a test of mixed quantum/classical time-dependent self-consistent field approximations".
  118. L. Wang, Phys. Chem. Chem. Phys. 2 (2000) 2883-92: "Quenching methods for chemical reaction dynamics within mixed quantum/classical approximation".
  119. L. Wang, Chem. Phys. 237 (1998) 305-14: "A rigorous quantum molecular dynamics study of a collinear A+BC-->AB+C reaction".
  120. L. Wang, Chem. Phys. Lett. 285 (1998) 359-65: "A rigorous treatment of reactive scattering on a single electronically adiabatic potential energy surface".
  121. L. Wang, J. Chem. Phys. 108 (1998) 7538-48: "A quenching method in mixed quantum-classical dynamics calculations on nonadiabatic problems".
  122. D.C. Clary and L. Wang, J. Chem. Soc., Faraday Trans. (atmospheric chemistry special issue), 93 (1997) 2763-7: "Influence of surface defects on the adsorption of HCl on ice".
  123. L. Wang and D.C. Clary, J. Chem. Phys. 104 (1996) 5663-73: "Time-dependent wave-packet studies on the sticking of HCl to an ice surface".
  124. L. Wang and D.C. Clary, Chem. Phys. Lett. 262 (1996) 284-91: "A quenching method in quantum-classical studies of dynamics with a bifurcating wavefunction".
  125. L. Wang and G.D. Billing, Chem. Phys. 224 (1997) 65-79: "Molecular dynamics studies of dissociation of O2 on Ag (111) surface".
  126. L. Wang, Q. Ge, and G.D. Billing, Surf. Sci. 304 (1994) L413-19: "Study of the surface diffusion of CO on Pt (111) by MD simulation".
  127. L. Wang, Q. Ge, and G.D. Billing, Surf. Sci. 301 (1994) 353-63: "Molecular dynamics study of H2 diffusion on a Cu (111) surface".
  128. L. Wang and G.D. Billing, J. Phys. Chem. 97 (1993) 2523-6: "Rotational relaxation and transport properties of oxygen by using the important sampling method".
  129. Q. Ge, L. Wang, and G.D. Billing, Surf. Sci. 277 (1992) 237-45: "Inelastic scattering and chemisorption of CO on a Cu (111) surface".
  130. G.D. Billing and L. Wang, Chem. Phys. Lett.188 (1992) 315-9: "The use of stratified important sampling for calculating transport properties".
  131. G.D. Billing and L. Wang, J. Phys. Chem. 96 (1992) 2572-5: "Semiclassical calculations of transport coefficients and rotational relaxation of nitrogen at high temperatures".
  132. L. Wang and G.D. Billing, J. Chem. Soc., Faraday Trans.88 (1992) 163-6: "Rotational relaxation and transport coefficients for gaseous hydrogen chloride".